
Automated Glue/Wrapper Code Generation in Integration of Distributed and
Heterogeneous Software Components

Wei Zhao, Barrett R. Bryant,
Fei Cao, Carol C. Burt

Computer and Information
Sciences Department

 University of Alabama at
Birmingham

 Birmingham, AL 35294-1170,
U.S.A.

{zhaow,bryant,cburt}
@cis.uab.edu

Rajeev R. Raje,
 Andrew M. Olson

Computer and Information
Science Department

 Indiana University Purdue
University Indianapolis

 Indianapolis, IN 46202, U.S.A.
 {rraje, aolson}@cs.iupui.edu

Mikhail Auguston
Computer Science Department
 Naval Postgraduate School
Monterey, CA 93943, USA
 auguston@cs.nps.navy.mil

Abstract

UniFrame is a framework to help organizations to
build interoperable distributed computing systems. Using
UniFrame, a new system is built by assembling pre-
developed heterogeneous and distributed software
components. UniFrame solves the heterogeneity problem
by explicitly modeling the domain knowledge of various
technology domains (component model domains,
programming language domains, operating system
platform domains, etc.), from which the Interoperation
Generative Domain Model (IGDM) straddling the
technology domains can be constructed. The
glue/wrapper code that realizes the interoperation
among the distributed and heterogeneous software
components can be generated from the IGDM. In this
paper, an informal implementation in Java of
glue/wrapper code generator is given, followed by a
discussion on a formalization of IGDM. The formalism
comes from the fact that if the family of glue/wrapper
code can be modeled formally, an instance glue/wrapper
code can be generated automatically. In this
formalization, the IGDM is formally modeled as a
language definition using a grammar; the code that
realizes the interoperation is a valid sentence derivable
from the grammar, and will be generated automatically
from the IGDM during the assembly time.

1. Introduction

In today’s world, distributed computing systems (DCS)

are omnipresent. The successes of organizations will
largely depend upon their abilities to create robust and
effective software for DCS. Despite the achievements of

component-based software engineering in distributed
computing environments, the inherent complexity, de-
centralization and heterogeneity of DCS still remain risks
and challenges. Achieving a seamless interoperation
among heterogeneous distributed components would be
the most critical task of building a successful DCS.
UniFrame [Raj01], [Raj02] is such a framework to help
organizations to build interoperable DCS.

To meet the challenges, UniFrame has the following
three specific goals:

1. The genetic diversity and complexity of the world (a

plethora of component models, programming languages,
operating systems, communication protocols) causes
separation and isolation among the technology islands.
UniFrame provides a unified interoperation among the
collaborating components.

2. The rapid technology evolution makes the application
integration a real challenge. With the interoperability,
the legacy features can be integrated into the system
developed in new technologies.

3. The advances in the processor and networking
technologies have changed the computing paradigm
from a centralized to a distributed one. “The network is
the computer.” The ability to deal with distribution is
essential to develop large scale DCS.

In short, UniFrame aims at the distribution and

interoperation. Using UniFrame, a new system is built by
assembling pre-developed heterogeneous and distributed
software components. This paper will discuss the
interoperation framework in UniFrame.

The paper is organized as follows. Section 2 distills
some aspects of UniFrame that are relevant to the

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Automated Glue/Wrapper Code Generation in Integration of Distributed
and Heterogeneous Software Components

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham,Department of Computer and
Information Sciences,Birmingham,AL,35294

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
to appear in the Proc. of the 8th IEEE International Enterprise Distributed Object Computing Conference
(EDOC2004), Monterey, CA 2004

14. ABSTRACT
UniFrame is a framework to help organizations to build interoperable distributed computing systems.
Using UniFrame, a new system is built by assembling predeveloped heterogeneous and distributed software
components. UniFrame solves the heterogeneity problem by explicitly modeling the domain knowledge of
various technology domains (component model domains, programming language domains, operating
system platform domains, etc.), from which the Interoperation Generative Domain Model (IGDM)
straddling the technology domains can be constructed. The glue/wrapper code that realizes the
interoperation among the distributed and heterogeneous software components can be generated from the
IGDM. In this paper, an informal implementation in Java of glue/wrapper code generator is given,
followed by a discussion on a formalization of IGDM. The formalism comes from the fact that if the family
of glue/wrapper code can be modeled formally, an instance glue/wrapper code can be generated
automatically. In this formalization, the IGDM is formally modeled as a language definition using a
grammar; the code that realizes the interoperation is a valid sentence derivable from the grammar, and
will be generated automatically from the IGDM during the assembly time.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

discussion of the interoperation framework. The
interoperation framework is presented in section 3 with
two alternative implementations (informal and formal).
Some representative related work is given in section 4. The
paper concludes in section 5.

2. Overview of UniFrame

Before we detail the interoperation framework, we first
introduce the basics of the UniFrame.

2.1. Fundamental The ses of this Framework

Modularity and component-based software
engineering. Component-based Software Engineering
(CBSE) and related technologies have demonstrated their
strength in recent years by increasing development
productivity and parts reuse. The implementation of
UniFrame is built upon the maturity of component-based
software engineering [Szy02]. In our framework, features
are standardized domain services. They are the smallest
and the most abstract units for reuse and re-construction.
One or more services are developed as a single
component. Given all the possible elementary services for
a business domain, a wide spectrum of systems can be
generated by various combinations of services.
Components are registered to the native registry in their
domain for later discovery, composition and trading.
Components are alive on the Internet, offering their
services, QoS assurance and associated price. The
separation of reusable feature (asset) development in the
domain engineering and the product configuration using
those assets in application engineering reflect the
fundamental discipline of the separation of component
development and component composition.

Software development paradigm shift: from single

application development to system family development.
System family engineering is also called Generative
Programming [Cza00] and Product-line Engineering
[Cle01], [SEI02], [Wei99] with the goal to automatically
generate concrete software products from a domain-
specification and reusable components. System family
engineering has two levels: domain engineering and
application engineering [Kan98]. Domain Engineering is
the activity of collecting, organizing, and storing past
experience in building systems or parts of systems in a
particular domain in the form of reusable assets.
Application engineering is the process of producing
concrete systems using the reusable assets developed
during domain engineering. In GP, a model of a family of
products is called the Generative Domain Model (GDM).
The major constitutes of a GDM are a feature model for

modeling the commonality and variability among the
products, a generator to generate a specific product based
on the feature model specification, and the implementation
of reusable components from which the product can be
generated. This concept of paradigm shift is the core
design of UniFrame as well as the interoperation
framework in UniFrame.

Capture, formalize, model and reuse engineering

knowledge. Any software system has domain-specific
concepts and logic, a structure, and an implementation in
concrete technologies. Decisions made on how to produce
the software using those concepts comprise the
engineering knowledge. In current software engineering
practice (single system development), the engineering
knowledge is scattered among: 1) the business executives,
2) the domain experts, 3) the software managers and
engineers, and 4) the software developers. During the
software production process, the decisions made by all
these participants contribute respectively towards: 1) the
goal of the system, 2) detailed business logic of the
system, 3) specifications of software architecture and
developers’ role assignments, and 4) concrete software
development by applying different programming
languages and component-based technologies.

However, when we move the development paradigm
to the product-line assembly, with the goal of
manufacturing the concrete software products from the
GDM automatically, the engineering knowledge specific to
that end product must be captured, modeled and formally
defined in a domain model to guide the automated
manufacturing in the application-engineering phase.

The applicability of a domain is flexible. A domain is a
set of current and future applications that share a set of
common capabilities and data [Kan90]. Based on the
principle of separation of concerns, we have encountered
different categories of domains in the process of
automated product generation [Zha02]:

1. Business domain: ontology for business concepts, logic

and hierarchical structure.
2. Architecture domain: ontology for software architectural

patterns, software parts’ functionality, role and
collaborations.

3.Technology domain: ontology for implementation
technologies, such as component models, programming
languages, security methods, and hardware platforms.

The principle of autonomy and separation of concerns

naturally shapes the categorization of those three
domains. Different dimensions of engineering knowledge
are built and maintained by different group of people with
different education background and talent set. This gives
them the opportunity to be more productive and

concentrate on the essence of their job. For example,
architecture and technology domain builders are more
likely to have computer science education than business
domain developers.

2.2. The Structure of the UniFrame Framework

As shown in figure 1, there are two phases in
UniFrame: domain-engineering and application-
engineering. The domain-engineering phase simulates the
domain development of three-dimensional domains
(business domains [Zha04], architecture domains and
technology domains). As part of the activity in business
domains, designated programmers implement business

domain features as software components with facilities of
Model Driven Architecture (MDA) [Fra03]. Components
are registered to native component model registries (e.g.,
RMI registry, CORBA naming services registry). Along
with a natural hierarchy of business organizations, a set of
available components for an application are not limited to
reside on one computer, one network or one organization.
They will be dispersed over the Internet. So, component
searching is one of the major concerns in UniFrame. The
UniFrame Resource Discovery Service (URDS) [Sir02]
searches federated native component registries in the
business domain for matched components. Domain level
development provides the meta-data and reusable assets
for the application engineering.

Figure 1. An Overview of the UniFrame Framework

The application-engineering phase is the process of
manufacturing concrete products from the business
domains. An order of a product is placed by using a user-
friendly form such as HTML form, a GUI builder, a UML1
model, a Generic Modeling Environment (GME) [GME]
model or natural language. This order is translated into the
internal representation that can be used for validation and
initiating a search. We chose the XML for the internal
representation. Then, the order is first validated according
to the feature model in the business domain (no business
logic violation [Zha04]). If this validation succeeds, URDS
is invoked for searching the implementation components
over the business domain space. When the URDS returns,

1 Unified Modeling Language, http://www.uml.org/

a dummy composition of a set of candidate components is
validated according to the feature model in the
architecture domain (no architectural violation) with any
necessary architectural instrumentation code generated
automatically. Finally, if there are any incompatibilities in
the component implementation technologies, the
glue/wrapper code should be generated for the
interoperation.

This paper will focus on the UniFrame interoperation
framework that is called the Internet Component Broker
(ICB), which is analogous to an Object Request Broker
(ORB). As opposed to providing the capability to generate
the glue and wrapper necessary for objects written in
different programming languages to communicate
transparently, the ICB provides the interoperation for

components implemented in diverse component models
and thus presents a collaboration vision one level above
the ORB. For the interoperation of heterogeneous
software components, ICB gives a vision of unified
middleware.

2.3. Unified Meta-component Model (UMM)

Because of the separation of component
implementation and component assembly, a unified
component introspective mechanism is needed for the
integration of components developed in diverse
technologies. The Unified Meta-component Model
(UMM) [Raj00] is such a mechanism that provides an
abstraction for each component.

Our study has discovered that any individual feature
implementation (component) reveals four aspects of
knowledge in regards to the assembly process:
computational, cooperative, deployment and economic
aspects. As the domain grows, feature development would
span multi-organization, multi-region/country, multi-time
period, and multi-technology, which lends them a
distributed and heterogeneous nature. UMM can formally
and uniformly represent four aspects:

1. UMM computational aspects indicate implemented

services, algorithms used, complexity, service contracts
(component interface), service usage patterns.
Parameters in UMM computational aspects identify
features in the business domain.

2. Components are developed for reuse. UMM
cooperative aspects take care of the interrelationship
among the components, the individual functionality role
contributing to the whole system, etc. Parameters in
UMM cooperative aspects identify the entity and entity
relationship in the architecture domain.

3. Some deployment issues such as component model and
programming language used, operating system
platforms, underlying network quality, CPU and memory
usage, etc., constitute the deployment aspect of the
UMM. UMM deployment aspects present the
technology domain features for generating
interoperation and deployment instrumentation code.

4. UMM economic aspects straddle business, architecture
and technology domains, identifying the QoS
parameters in each domain.

If the system assembly succeeds, a new UMM

specification will be generated as well by composing
component UMMs so that the new product can act as a
reusable component for subsequent system generations.

There are several ways to develop UMM:

1. UMM is first documented in natural language, and then

transformations can be applied to transform the informal
UMM specification to formal models, and finally to the
implementation software components [Bry03], [Lee02a],
[Lee02b].

2. UMM is developed as a design model (e.g., UML) or a
domain-specific model (e.g., GME), then a MDA
approach is adopted to transform a business model to a
Platform Specific Model (PSM) [Fra03], which will
generate APIs, which will then be fine-tuned with
concrete implementations.

3. Components are developed first, and then UMMs are
generated from the implementation via some tool
support.

Currently in our prototype, UMM is in a mix of natural

language and XML, and can be generated from a Platform
Independent Model (PIM) developed in GME [Cao03].
The components are developed manually by the
programmer conforming to the feature specifications.

2.4. Quality of Service (QoS)

During component assembly, QoS is an important
concern to ensure that the generated product meets the
quality of service in the product order requirements. The
QoS requirements are expressed by selecting an
appropriate set of parameters from a catalog of QoS
parameters [Bra02], [Raj02]. We have summarized and
published 18 QoS parameters. QoS is business related
(speed of the car, the aliveness of a supply chain),
architecture related (structure integrity) or technology
related (security level, turnaround time). QoS parameters
are divided into two categories: a) static (the value can be
obtained from UMM, such as encryption level), b)
dynamic (the value can only be obtained from composition
run-time, such as turnaround time). By using event
grammar [Aug97], the dynamic QoS provides dynamic
metrics that can be generated during the assembly time
and be weaved into the glue/wrapper code. For example,
we can use AspectJ2 to weave in the turnaround time
testing probe into the glue/wrapper code.

It is always possible that URDS will find multiple
components with compatible static QoS, and so the
dynamic QoS metrics will further refine the candidate set
to generate a system that meets the user’s QoS
expectation of the final system.

2AspectJ project , Eclipse.org,
http://www.eclipse.org/aspectj/index.html

3. Interoperation Framework in UniFrame

 In this section, a detailed discussion of the
interoperation framework in UniFrame is given followed by
two alternative ways of implementation.

3.1. UniFrame Interoperation Framework

Potentially, there are several ways to establish the
interoperation among the heterogeneous and distributed
software components:

1. Source-to-source transformation: completely translate a

component into the technology of its communicator.
One example would be to use program transformation
for legacy component migration [Bax04]. This type of
technology is usually used during the reengineering
[Ben87] of legacy systems. But source-to-source
transformation can not be used as a general solution for
the interoperation of heterogeneous software
components because the complexity involved in
establishing interoperation is O(n2). Considering there
are n components, n(n-1)/2 transformations are needed
for a full connected interoperation among n
components. Despite the complexity, the source-to-
source transformation is generally considered hard, and
normally has to depend on a sophisticated commercial
tool such as the Design Maintenance System [Bax04].

2. Transforming communicating components into a
common technology for interoperation will significantly
lower the interoperation complexity to O(n) since only n
transformations are needed to transform n components
into a common technology. An obvious example is
using XML as an exchangeable technology for
interoperation among different data forms.

3. Meta-interoperation is a specialization of the second
item above. The common entity in meta-interoperation is
not (or not only) the common technology used, but
(also) is the meta-data for the transformation.
Apparently, XML Meta-data Interchange (XMI) [Gro02]
falls in this category, e.g., XMI defines a standard
schema for object-XML mapping so that different
objects can be mapped to a unified XML. MDA for the
purpose of interoperation among different technologies
is another example. MDA defines the standard mapping
from a common Platform Independent Model (PIM) to
different Platform Specific Models (PSMs) so that
components in one PSM can interoperate with
components in another PSM. CORBA [Vin97], [Corba]
for interoperation among distributed components that
are written in different programming languages also

belongs to this category because the IDL can be
considered as a PIM.

4. Three items listed above are all targeting translating the
communicators. However, source-to-source semantic
translation of software components, model (in the case
of MDA), or APIs (in the case of CORBA), is laborious
and error prone. The last possibility for interoperation is
translating the communications instead of
communicators. In terms of the size of the entity to be
translated, the communication in general is magnitudes
smaller than the communicators themselves. As a result,
translating communication is the lightest way of
establishing interoperation, which is usually realized by
messaging. UniFrame has subscribed to this approach.

Before detailing the UniFrame interoperation framework,

we first introduce the hypothesis we adopted. In the
vision of UniFrame, components are autonomous and live
in their own technology territory. In such territory, there is
a central registry where components can be registered and
be invoked from. Components, after being manufactured,
should be registered to the registry. By autonomy,
components are totally blind to any other component
technologies. If a component is aware of its collaborators,
it is expecting its collaborators are of the same technology
as itself. Each component offers some services that are
identifiable in terms of business domain features.

Thus, the interoperation means the communication
across the territory boundaries. There are two main tasks
in this communication: first, where is the component;
second, how do components communicate. URDS [Sir02]
takes care of the first task by searching federated
registries in the business domain for expected components
and returning with the registry and the component ID.
This paper specifically addresses the second task. The
interoperation is achieved by generating proxies
dynamically for invoking the components from the registry
and for replaying communications. Shown in the figure 2,
the communication between the component and the proxy
falls in the same territory. The essential aspect of
interoperation in this picture is to establish a common
message protocol so that proxies can talk to each other
across the technology boundaries. In UniFrame, we use
Simple Object Access Protocol (SOAP)3 for encoding and
decoding parameters, data types and exceptions. The code
that actually realizes the interoperation is called the
glue/wrapper code, which includes two proxies.

3 SOAP Messaging Framework, W3C,
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

Figure 2. The Interoperation Framework

To be specific, the fundamentals of the UniFrame
interoperation framework are as follows:

1. The glue/wrapper establishes a binary connection for

any two heterogeneous components. Between these
two components, one must be the service requester, and
the other one must be the service provider. From this
perspective, no matter what is the underlying
architecture of the whole distributed system, client-
server is a general framework for a binary relationship of
a pair of communicating components. For the
communication between the two components we need a
proxy server for the service requester, and a proxy client
for the service provider. The proxy server registers itself
to its component registry listening for the request
coming from the service requester, and then translates
this request through the SOAP channel to the proxy
client who decodes the SOAP message and invokes the
ultimate service provider with the redirected service
request. Two proxies also take the responsibility of
managing the communication session. The use of
proxies attacks the problem of the heterogeneity of
component models; and SOAP/HTTP solves the
language heterogeneity and distribution.

2. The glue/wrapper code realizes the interoperation at run
time, i.e., the existing component should not be modified
or recompiled. The glue/wrapper can be generated,
compiled and bound dynamically during the
composition run time.

3. Because the semantics of business domain features are
standardized and shared by all the feature
implementation developers, each implementation can
have slightly customized interfaces including different
naming strategies of parameters and methods, and the
variations on the parameters (only to a degree that the
translations can be done automatically for solving the
variations).

The main challenge in realizing interoperation among

heterogeneous components is not the issue of
constructing glue/wrapper code for a particular pair of

components, but to construct a generator that can
automatically generate glue/wrapper code for different
pairs of components on demand. To achieve that, the
generator needs to access both the knowledge for the
technology domains at the domain level and the
knowledge for a particular component implementation at
the component level. For the technology domain, the
generator has to know how many kinds of technology
domains (component model domains, programming
language domains, operating system platform domains,
etc.) and what information in a particular technology
domain (e.g. Java programming language domain) for the
interoperation purpose. At the component level, the
generator needs to know from the deployment aspect of
UMM what technologies are employed in a component
implementation.

In the next section, we will review an informal
implementation of the glue/wrapper code generator.

3.2. An Informal Implementation of
Glue/Wrapper Code Generator

In this informal implementation, both the generator and
the technology domain knowledge are written in Java.
Domain knowledge is embedded in the java classes in the
form of printing statements. Shown in figure 3, there are 4
different kinds of technology domains that the generator
directly accesses: proxy client, proxy server, programming
languages, and operating systems. The proxy server and
the proxy client inherit the architecture knowledge from
the architecture domain server and client respectively.
There can be federated hierarchies in each technology
domain. For example, for a specific component model, say
Remote Method Invocation (RMI)4, there is an RMIServer
that implements ProxyServer and extends RMI, also there
is an RMIClient (although not shown in figure 3) that
implements ProxyClient and extends RMI. Then we will be
able to generate both proxy server and proxy client for a
RMI component. A component model is usually abstract
and should be concretized by different vendor-specific
technologies. For example, TAO [Har98] is a concretization
of CORBA, and JavaRMI is a concretization of RMI.
 There are some benefits in developing the generator in
Java.

1. By taking advantages of polymorphism, the generator is

generic to any specific technology as it only deals with
interfaces.

2. By using Java reflection, we can dynamically load a
specific technology domain class as needed based on

4 Java Remote Method Invocation (Java RMI),
http://java.sun.com/products/jdk/rmi/

the parameters in the component UMM. For example, if
the UMM indicates the language used for two
components are Java and C++, then only the Java and
C++ classes in programming language domains are
loaded into the Java runtime environment. This will
drastically improve the performance of the generator
considering technology domains contain a wide variety
of classes.

3. The generator framework is extensible. We can extend
the framework with any programming languages,
operating systems and component models. In the case
of new technologies (a new component model, a new
vendor-specific product for an existing component
model, etc.), we only need to modify the framework by
adding the new technology domain subclass, and the
generator should remain unchanged.

CorbaC l i en t Java

techno logy Impo r t s ()
c o m p o n e n t I m p o r t s ()
i nvokeServe r ()
c l i e n t C o m p i l a t i o n ()
c l i en t I nvoca t i on ()

R m i S e r v e r

t e c h n o l o g y I m p o r t s ()
c o m p o n e n t I m p o r t s ()
reg is te rServe r ()
se r ve rComp i l a t o i n ()
server Invocat ion()

R M I
C o r b a

C l i e n t Server

J a v a R m i
T A o

U M M
(f r o m U M M)

Java

c o m p i l e ()
invoke()
s o a p P r o c e s s o r ()

C P P

c o m p i l e ()
invoke()
s o a p P r o c e s s o r ()

Un ix
W i n d o w s

C o r b a C l i e n t C P P

P r o x y S e r v e rP r o x y C l i e n t

L a n g u a g e O p e r a t i n g
S y s t e m

Q o S W e a v e r

t u r n A r o u n d ()

G e n e r a t o r
(f r o m L o g i c a l V i e w)

Figure. 3 The Glue/Wrapper Code Generator in Java

By constructing a technology domain knowledge
base, we do not mean constructing a complete
specification for a particular technology. For the
interoperation under the hypothesis mentioned earlier,
only some specific information is needed. Such
information includes: how to register and invoke a server
from a registry in a specific component model; how to
process SOAP messages in a specific language; how to
compile and invoke a program in a specific programming
language and operating system platform; what are the
component model product specific class path and
compilation options.

Besides generating interoperation code, the generator
has other responsibilities such as dynamic QoS testing,
system monitoring, and session management probe
generation. As an example, we can use AspectJ [Kic97]
to weave turnaround time testing code into the
generated proxies (shown in figure 4 as QoSWeaver
class).

3.3. Towards the Formalization of Automated
Glue/Wrapper Code Generation

In the previous section, we have sketched out some
benefits of implementation in Java. However, embedding
the technology domain knowledge into a programming
language using printing statements tends to blur the

technology domain specific information. Consequently,
it will be an obstacle for domain evolution and reuse, and
further prevent the generator from evolving.

To solve this problem, we have applied the Generative
Programming (GP) [Cza00] and Product-line Architecture
[Cle01], [SEI02], [Wei99]. Both of these technologies aim
at defining and modeling a family of products so that a
product instance can be generated automatically from
this family. As mentioned in section 2.1, the system
family development is the core design of UniFrame, and
as well as the interoperation framework in UniFrame. The
rationale for the applicability of GP is that the
glue/wrapper code for a pair of components of particular
technologies is one product instance; the glue/wrapper
code for the pairs of components of all possible
technologies form a family of glue/wrapper code. If this
family can be well modeled, one particular glue/wrapper
code instance can be generated from the family
automatically.

The GDM for the family of glue/wrapper code is
called the Interoperation GDM (IGDM, see figure 4).
IGDM straddles different technology domains including
different component model domains, different
programming language domains, different operating
system domains, and different security method domains.
The feature model in the IGDM explicitly mo dels the
domain-specific features of different technology

domains, which direct the variations among
glue/wrapper code instances. The generation of
glue/wrapper code for components in different
technologies depends on the domain-specific features of
technology domains. In the IGDM, the reusable
components, from which the glue/wrapper code can be
generated, are the code fragments of potential
glue/wrapper code.

In order to support the automated glue/wrapper code
generation from the IGDM, we have adopted a formal
modeling theory on feature modeling in the IGDM. The
feature model in the IGDM is defined as a language; the
glue/wrapper code generated from the IGDM is a valid

sentence of this language. The generator for the
glue/wrapper code is the interpreter for the grammar that
is used to define the feature model. The terminal symbols
of the grammar are code fragments. The glue/wrapper
code is a string of code fragments.

To apply successfully this theory and the
programming-language-oriented techniques to feature
modeling, the first question to be answered is whether
there exist concepts in feature models that are the
counterparts of syntax and semantics in programming
languages. The fact is these concepts do exist in the
feature models, and are discussed below.

Figure. 4 The Formalization of Automated Glue/Wrapper Code Generation

1. The composition syntax is the structure of the

interoperable framework. The following context -free
derivations show part of the structure of the
glue/wrapper code to be generated. Currently, the
grammar we use to define IGDM feature model is called
TLG++ [Zha04]. The following code is in TLG++. For the
notational syntax, the “,” is for “and”, and the “;” is for
“or”.

glueWrapper code : proxyServer,
 proxyClient.
proxyClient : technologyImports,
 componentImports, invokeServer,
 clientCompilation, clientInvocation.
invokeServer : findRegistry,
 getServerObject, initiateServer,
 serverInvocationExceptions.
……

2. Static semantics constrains types of glue/wrapper code

to be generated. In particular, the component model is
modeled as the type of the component; and

programming languages, operating systems, message’s
signature and type, security methods, and digital
signatures are modeled as the attributes of the
components. Based on the different value of component
type and its parameters, different glue/wrapper should
be generated. In the following code fragments, the
codes in bold are the parameters that indicate the
different features of technology domains. TLG++
distinguishes itself from context -fee grammars is this
feature of parameterization. The parameters are
evaluated while the syntax tree is built. The codes
underlined are the glue/wrapper code fragments
enclosed in the double quotation mark. The code
fragments are the terminals of the grammar.

findRegistry:
 where ComponentModel= corba,
 “orb= org.omg.CORBA.ORB .init(args,
null);”
 ProductTraderPackage
 “trading=TradingHelper.narrow

(orb.resolve_initial_references("LCBT
rading"));”……;
where ComponentModel = rmi,
 ……;
where ComponentModel = j2ee……

3. Dynamic semantics models the component composition

QoS that are affected by the component technologies. If
the components are implemented in different
technologies, they will present different QoS values.
The generated glue/wrapper code will also affect the
QoS, and should be part of dynamic semantics. Event
grammars [Aug97] are used to generate an event trace,
which acts as the QoS metric to be inserted into the
generated glue/wrapper code.

4. Related Work

There have been some attempts towards achieving
interoperability among different technologies emerging
out of industry and research organizations. Some
prominent examples, besides the work mentioned in
section 3.1, are described below.

Middleware technologies such as CORBA [Corba] and
DCOM [Ses97] provide a communication infrastructure for
a heterogeneous and distributed collection of objects.
Based on this infrastructure, objects can interoperate
across networks regardless of the language in which they
are written or the platform on which they are deployed.
However such middleware or component models exclude
the presence of others. UniFrame gives a vision of unified
middleware providing the interoperation not only among
the programming languages and platforms but also among
the component models. The proxies in this paper are
similar to the stubs/skeletons in CORBA. However, the
concept of IDL in CORBA is elevated to the business
feature model of this paper. The feature model in a
business domain defines the semantics of features and
their interactions, and is shared by the feature
implementation developers.

Some ad hoc approaches for interoperation between
component models come out from the industry that are
targeting specific component model pairs. RMI is a
language centric approach using JRMP (Java Remote
Method Protocol) for interactions between distributed
objects. RMI requires that the entire distributed
application be programmed in pure Java. Sun5 and IBM6

5 Sun Microsystems, Java RMI-IIOP Documentation url:
http://java.sun.com/j2se/1.3/docs/guide/rmi-iiop/index.html

have jointly developed RMI-IIOP, a new version of RMI
that runs over IIOP and interoperates with CORBA ORBs
and CORBA objects programmed in other languages. To
bridge CORBA and DCOM, the Object Management
Group (OMG) provides the interworking architecture
specifications regarding the mappings between DCOM
and CORBA which includes: Interface Mapping, Interface
Composition Mapping and Identity Mapping, etc. [Rap01].

Web services [New02] claims to be a means of
interoperation among component models. Nevertheless,
web services achieve the interoperation by introducing
yet more standards such as Web Service Definition
Language (WSDL), Universal Description, Discovery, and
Integration (UDDI), and SOAP. This does not completely
solve the problem due to the inherited local autonomy and
the difficulty of the adoption of standards, whereas
UniFrame approaches the problem in a different way by
modeling existing technology domains.

As mentioned in section 3.1, MDA [Fra03] has
subscribed to the meta-interoperation approach. For
example, for the interoperation between the web service
and Java, the system has to know the following three
things: the platform-independent UML class model, the
UML-java mapping, the UML-SOAP/WSDL mapping. As
with web services, MDA forces UML or MOF to be the
standards for the interoperation.

5. Conclusions

In this paper, we have discussed an interoperation
framework for integration of heterogeneous and
distributed software components. The target goal of this
framework is the automated glue/wrapper code generation
during the comp onent assembly time. This framework
incorporates the following key concepts: 1) an
introspective meta model (UMM) for the autonomous
components; 2) an explicit modeling of domain knowledge
of various technology domains instead of introducing new
standards for interoperation; 3) introducing the IGDM that
models a family of glue/wrapper code to provide a formal
foundation for automated glue/wrapper code generation;
4) a language-oriented way to formalize the IGDM so that
the glue/wrapper code generated from IGDM is a valid
sentence that can be generated from a grammar. The initial
experiments have been carried out to integrate
components written in RMI and CORBA, and the
glue/wrapper code can be automatically generated for their

6 IBM developer Works, Java technology Standards RMI-IIOP,
url: http://www-106.ibm.com/develperworks/java/rmi-
iiop/summary.html

interoperation based on the informal implementation
approach. Future work will be to design and extend our
grammar notation to formalize IGDM. Experiments are also
done on applying this framework to other component
models such as .Net, DCOM, J2EE, Web Services, mobile
agents, and as well as wireless component models [Sha03].

6. Acknowledgement

This research is supported in part by the U. S. Office
of Naval Research under the award number N00014-01-1-
0746.

7. References

[Aug97] M. Auguston, A. Gates, M. Lujan, “Defining a Program

Behavior Model for Dynamic Analyzers,” Proc.
SEKE '97, 9th Int. Conf. Software Eng. Knowledge
Eng., pp. 257-262, 1997.

[Bax04] I. Baxter, C. Pidgeon, M. Mehlich, “DMS: Program
Transformations for Practical Scalable Software
Evolution”, to appear in the Proc. of 2004
International Conference on Software Engineering
(ICSE), 2004.

[Ben87] S. Bendifallah and W. Scacci, “Understanding Software
Maintenance Work”, IEEE Transactions on Software
Engineering, Vol. 13 , No. 3, 1987.

[Bra02] G. J. Brahnmath, R. R. Raje, A. M. Olson, M.
Auguston, B. R. Bryant, C. C. Burt, “A Quality of
Service Catalog for Software Components,” Proc.
Southeastern Software Engineering Conf., pp. 513-
521, 2002.

[Bry03] B. Bryant, B-S. Lee, F. Cao, W. Zhao, C. Burt, J.
Gray, R. Raje, A. Olson, M. Auguston, “From Natural
Language Requirements to Executable Models of
Software Components”, Proc. of the Monterey
Workshop on Software Engineering for Embedded
Systems: From Requirements to Implementation, pp.
51-58, 2003.

[Cao03] F. Cao, Z. Huang, B. Bryant, C. Burt, R. Raje, A.
Olson, M. Auguston. ``Automating Feature-Oriented
Domain Analysis,'' Proc. of the 2003 International
Conference on Software Engineering Research and
Practice (SERP'03), CSREA Press, pp. 944-949, 2003.

[Cle01] P. Clements, L. Northrop, Software Product Lines:
Practice and Patterns, Addison-Wesley, 2001.

[Corba] Common Object Request Broker Architecture
(CORBA), http://www.corba.org/

[Cza00] K. Czarnecki, U. W. Eisenecker, Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[Gro02] T. Grose, G. Doney, S. Brodsky, Mastering XMI,
John Wiley & Sons, Inc., 2002.

[Fra03] D. S. Frankel, Model Driven Architecture: Applying
MDA to Enterprise Computing. Wiley Publishing, Inc.,
2003.

[GME] GME User’s Manual. The Institute for Software
Integrated Systems, Vanderbilt University.
http://www.isis.vanderbilt.edu/Projects/gme/Doc.html

[Har98] T. Harrison, D. Levine, D. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service”,
Computer Communications, Vol. 21, No. 4, 1998

[Kan90] K. C. Kang, S, G. Cohen, J. A. Hess, W. E. Novak, A.
S. Peterson, “Feature-Oriented Domain Analysis
(FODA) Feasibility Study”, Technical Report,
CMU/SEI-90-TR-21, 1990.

[Kan98] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh,
“FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures,” Annals of
Software Engineering 5, pp. 143-168, 1998.

[Kic97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Videira Lopes, J. M. Loingtier, J. Irwin, “Aspect-
Oriented Programming”, Proc. of European Conference
for Object-Oriented Programming (ECOOP), pp. 220-
242, Springer-Verlag, 1997.

[Lee02a] B.-S. Lee, B. R. Bryant, “Automated Conversion from
Requirements Documentation to an Object-Oriented
Formal Specification Language”, Proc. of ACM
Symposium on Applied Computing (SAC), pp. 932-
936, 2002.

[Lee02b] Lee, B.-S. and Bryant, B. R., “Automation of Software
System Development Using Natural Language
Processing and Two-Level Grammar,” Proc. 2002
Monterey Workshop Radical Innovations of Software
and Systems Engineering in the Future, 2002, pp. 244-
257.

[New02] E. Newcomer, Understanding Web Services: XML,
WSDL, SOAP, and UDDI, Addison-Wesley, 2002.

[Raj00] R. R. Raje, “UMM: Unified Meta-object Model for
Open Distributed Systems.” Proc. ICA3PP 2000, 4th
IEEE Int. Conf. Algorithms and Architecture for
Parallel Processing, 2000, pp. 454-465.

[Raj01] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
C. C. Burt, “A Unified Approach for the Integration
of Distributed Heterogeneous Software Components,”
Proc. Monterey Workshop Engineering Automation for
Software Intensive System Integration, pp. 109-119,
2001.

[Raj02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
C. C. Burt, “A Quality of Service-Based Framework
for Creating Distributed Heterogeneous Software

Components,” Concurrency and Computation:
Practice and Experience, Vol. 14, No. 12, pp. 1009-
1034, 2002.

[Rap01] Raptis, K., Spinellis, D., Katsikas, S. “Multi-
Technology Distributed Objects and their Integration,”
Computer Standards & Interfaces, Vol. 23, 157-168,
2001.

[Sha03] P. V. Shah, B. R. Bryant, C. C. Burt, R. R. Raje, A.
M. Olson, M. Auguston, "Interoperability between
Mobile Distributed Components using the UniFrame
Approach," Proc. of the 41st Annual ACM Southeast
Conference, pp. 30-35, 2003.

[SEI02] Software Engineering Institute, A framework for
software product line practice –version 3.0, 2002,
 http://www.sei.cmu.edu/plp/framework.html

[Ses97] R. Sessions, COM and DCOM: Microsoft’s Vision for
Distributed Objects, New York, NY: John Wiley &
Sons, 1997.

[Sir02] N. N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson,
M. Auguston, C. C. Burt, “An Architecture for the
UniFrame Resource Discovery Service,” Proc. SEM
2002, 3rd Int. Workshop Software Engineering and
Middleware, Springer-Verlag LNCS, Vol. 2596, pp.
20-35, 2002.

[Szy02] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, 2nd edition, Addison-Wesley
Longman, 2002.

[Vin97] S. Vinoski, “CORBA: Integration Diverse
Applications Within Distributed Heterogeneous
Environments”, IEEE Communications, Vol. 14, No. 2,
1997.

[Wei99] D. M. Weiss, C. T. R. Lei, Software Product-line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[Zha02] W. Zhao, B. R. Bryant, F. Cao, R. R. Raje, M.
Auguston, A. M. Olson, C. C. Burt . “A Component
Assembly Architecture with Two-Level Grammar
Infrastructure”, Proc. of OOPSLA’2002 Workshop
Generative Techniques in the Context of Model Driven
Architecture, 2002.
http://www.softmetaware.com/oopsla2002/zhaow.pdf

[Zha04] W. Zhao, B. R. Bryant, R. R. Raje, M. Auguston, C.
C. Burt, A. M. Olson, “Grammatically Interpreting
Feature Compositions”, to appear in the proceedings
of the 16th International Conference on Software
Engineering and Knowledge Engineering (SEKE’04),
2004.

